TL3

series

Product Segments

- Care Motion
 - Comfort Motion

- Ergo Motion - Industrial Motion

The TL3 columns from TiMOTION are made up of three extruded aluminum tubes of rectangular shape that give the system great stability and a high stroke with reduced retracted length. This electric lifting column allows for an easy integration into many height adjustable workstation applications, such as an exam chair in healthcare industry.

General Features

Max. load
Self-locking force
Max. dynamic bending moment
Max. static bending moment
Max. speed at max. load
Max. speed at no load
Retracted length
IP rating
Dimension of outer tube
Stages
Stroke
Certificate
Output signals
Options
Voltage
Color
Operational temperature range

4,000N (push)
4,000N
$1,000 \mathrm{Nm}$
$2,000 \mathrm{Nm}$
$13.7 \mathrm{~mm} / \mathrm{s}$
$39 \mathrm{~mm} / \mathrm{s}$
\geq Stroke / $2+150 \mathrm{~mm}$
IPX6
177.4*150.7mm rectangular

3-stage
250~1200mm
IEC60601-1, EMC
POT, Hall sensors
Direct cut system
12V DC; 24V DC (thermal control)
Black, matte silver
$+5^{\circ} \mathrm{C} \sim+45^{\circ} \mathrm{C}$

Drawing

Standard Dimensions
(mm)

Load and Speed						
CODE	Load (N) Push	Self Locking Force (N)	Typical Current (A)		Typical Speed (mm/s)	
			No Load 32V DC	With Load 24V DC	No Load 32V DC	With Load 24V DC
Motor Speed (2200RPM, duty cycle 10\%)						
B	4000	4000	2.5	6.3	14.5	7.6
C	2000	2000	2.5	4.3	22.0	13.0
D	1000	1000	2.5	3.8	39.0	24.0
Motor Speed (2800RPM, duty cycle 10\%)						
E	4000	4000	3.5	7.5	18.5	9.4
F	2000	2000	3.5	6.3	35.0	20.0
Motor Speed (3800RPM, duty cycle 10\%)						
G	4000	4000	4.0	10.8	28.0	13.7

Note

1 Parameters above are from tested average, please refer to approval drawing for final value.
2 The current \& speed in table are tested with 24 V DC motor. With a 12 V DC motor, the current is approximately twice the current measured in 24 V DC; speed will be similar for both voltages.

3 This self-locking force level is reached only when a short circuit is applied on the terminals of the motor. All the TiMOTION control boxes have this feature built-in.

4 Bending moment Y direction $=X^{*} 0.8$
5 Static bending moment $=$ dynamic*2

Dynamic bending moment (Nm)- X direction		
Stroke (mm)	$\mathrm{S} / 2+150$	$\mathrm{~S} / 2+220$
$\mathbf{1 0 0 - 3 0 0}$	700	1000
$\mathbf{3 0 1 - 5 0 0}$	500	800
$\mathbf{5 0 1 - 7 0 0}$	300	500
$\mathbf{7 0 1 - 1 2 0 0}$	200	200

Performance Data (24V DC Motor)

Motor Speed (2200RPM, Duty cycle 10\%)

Speed vs. Load

Current vs. Load

Performance Data (24V DC Motor)
Motor Speed (2800RPM, Duty cycle 10\%)

Speed vs. Load

Current vs. Load

Performance Data (24V DC Motor)

Motor Speed (3800RPM, Duty cycle 10\%)

Speed vs. Load

Current vs. Load

TL3 Ordering Key - Top End Socket

TL3

Note

1 The TL3 is designed especially for push applications, not suitable for pull applications.

TL3 Ordering Key - Side Cable

TL3

Note

1 The TL3 is designed especially for push applications, not suitable for pull applications.

TL3 Ordering Key - Direct Cut

TL3

Voltage	$5=24 \mathrm{~V}$ DC, thermal protector
Load and Speed	See page 3
Stroke (mm)	$100 \sim 1200$
Retracted Length (mm)	See page 10
Cable Exit	$\mathrm{B}=$ Top side - for TH; Bottom side - for TP
See page 10	$\mathrm{C}=$ Bottom side - Y cable, for TH + TP
	$\mathrm{D}=$ Top side - for the 2nd column; Bottom side - for TH \& TP; direct cut operation with 2 columns
E = Top side - for the 2nd column \& TH; Bottom side - for TP; direct cut operation with 2 columns	
Special Functions	$0=$ Without (Standard) $\quad 1=$ Safety nut
for Spindle	
Sub-assembly	
Functions for Limit Switches	$1=$ Two switches at full retracted / extended positions to cut current

See page 11			
IP Rating	$1=$ Without	$2=\operatorname{IPX} 4$	$3=I P X 6$
Output Signals	$0=$ Without		

Connector	C = Direct cut, water proof, anti-pull	
See page 11		
Cable Length (mm)	B = Cable exit \#B, L2 = L3 = 100	$D=$ Cable exit \#D, $L 2=L 3=L 4=100$
See page 12	C $=$ Cable exit \#C, $\mathrm{L} 1=\mathrm{L} 2=\mathrm{L} 3=100$	$\mathrm{E}=$ Cable exit \#E, L2 $=\mathrm{L} 3=\mathrm{L} 4=100$
Color	1 = Black (With black cable set)	$3=$ Matte silver (With black cable set)
	2 = Matte silver (With 428C color cable set)	
Tubes Direction	$0=$ Thinner on top $1=$ Wider on top	
See page 12		
Grounding Function	$0=$ Without $\quad 1=$ With	

Note

1 The TL3 is designed especially for push applications, not suitable for pull applications.

TL3 Ordering Key Appendix

Retracted Length (mm)

1. Minimum retracted length needs to $>=A+B+C$

A. Load (N)	1000	2000	4000
	Stroke / 2 +150 or Stroke / 2 +220		

Note

1 Different retracted length is relative to different bending moment, See page 3.

| B. Cable Exit | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CODE | Top End Socket | Bottom Side Cable | Top Side Cable | Top + Bottom side cable | Direct Cut |
| $\mathbf{1}$ | - | - | - | - | - |
| $\mathbf{2}$ | - | - | - | - | - |
| $\mathbf{3}$ | - | - | +15 | - | - |
| B | - | - | - | -35 | - |
| B, D, E | - | - | - | - | +35 |
| C | - | - | - | - | |

C. When with POT (When without POT, C = 0)

Cable Exit Code	Top End Socket	Bottom Side Cable	Top Side Cable
$\mathbf{1}$	+40	-	-
$\mathbf{2}$	-	+40	-
$\mathbf{3}$	-	-	+40

Note

1 If met $\mathrm{S}>700 \mathrm{~mm}$ \& $\mathrm{RL}=\mathrm{S} / 2+150$ \& Bottom side cable conditions at the same time, the minimum retracted length needs to +20 mm .

Cable Exit

1 = Top end socket

$3=$ Top side cable

$2=$ Bottom side cable

$4=$ Top (to TC) + Bottom (to TH) side cable

TL3 Ordering Key Appendix

Cable Exit

$B=$ Top side - for TH; Bottom side for TP

$C=$ Bottom side $-Y$ cable, for $T H+T P$

D = Top side - for the 2nd column; Bottom side - for TH \& TP; direct cut operation with 2 columns

$E=$ Top side - for the 2nd column \& TH; Bottom side - for TP; direct cut operation with 2 columns

Functions for Limit Switches

Wire Definitions						
CODE	Pin					
	1 (Green)	2 (Red)	$\bigcirc 3$ (White)	4 (Black)	5 (Yellow)	6 (Blue)
1	extend (VDC+)	N/A	N/A	N/A	retract (VDC+)	N/A
3	extend (VDC+)	common	upper limit switch	N/A	retract (VDC+)	lower limit switch

Connector

$1=$ DIN 6P, socket (Top end socket)

$\mathrm{F}=\mathrm{DIN} 6 \mathrm{P}, 180^{\circ}$ plug

$C=$ Direct cut, water proof, anti-pull

For TH:
long DIN 5P (Pin array 240 ${ }^{\circ}$), 180° socket (with anti-pull clip)
$\mathrm{G}=$ Molex 8P 90°

$1=$ DIN 6P, 90° plug (Side cable)

$2=$ Tinned leads
$2=$ DIN 6P, socket,

For Columm 2:
long DIN 6P (Pin array 240°),
180° plug (with anti-pull clip)

TL3 Ordering Key Appendix

Cable Length (mm)

Tubes Direction

Terms of Use

The user is responsible for determining the suitability of TiMOTION products for a specific application. TiMOTION products are subject to change without prior notice.

